

CPC BELGELENDİRME MUAYENE VE DENEY HİZMETLERİ TİC. LTD. ŞTİ. Çamlıca Mah. (Timko Eti) Anadolu Blv.No:20-R Blok No:4 Yenimahalle/Ankara www.cpcert.org

European Technical Assessment

ETA-24/0833 of (24.10.2024)

Technical Assessment Body issuing t CPCBelgelendirme Muayene ve Deney	-					
Trade name of the construction product	PESF, PESF-E, PESF-C Chemical Anchor					
Product family to which the	Product Area Code: 33					
constructionproduct belongs	Bonded injection type anchor for use in non-cracked concrete					
Manufacturer	Metsan Endustriyel Yapistiricilar Tic. A.S.					
	Birlik Organize Sanayi Bölgesi Batı Caddesi 1.Sokak No.1 34953 Tuzla, İstanbul TÜRKİYE					
Manufacturing plant(s)	Metsan Endustriyel Yapistiricilar Tic. A.S.					
This European Technican Assessment contains	17 pages including 4 Annexes which forms an integral part of this assessment					
	Annex may contain confidential information and is/are not included in the European Technical Assessment when that assessment is publicly disseminated					
This European Technical Assessment is issued in accordance with Regulation (EU)No 305/2011, on the basis of	EAD 330499-02-0601 Bonded Fasteners for Use In Concrete					

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction must be identified as such.

1. Technical description of the product

The Metsan Chemical Anchor PESF, PESF-E, PESF-C, a polyester resin chemical anchor infused without styrene designed for non-cracked concrete, represents a bonded anchoring system comprising a cartridge containing injection mortar and a steel component. The Metsan Chemical Anchor PESF, PESF-E, PESF-C is a chemical anchor system that employs polyester resin infused without styrene, specifically formulated for adherence to non-cracked concrete. This system comprises a cartridge containing injection mortar and a steel component, wherein the steel elements consist of commercially available threaded rods equipped with a hexagon nut and washer. These steel components are crafted from either galvanized steel or stainless steel.

The anchoring process involves placing the steel element into a pre-drilled hole filled with injection mortar, establishing a secure connection through the amalgamation of the metal part, injection mortar, and the concrete substrate.

For a comprehensive visual representation and detailed product description, please consult Annex A.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for tension loads	See Annex C 1
Characteristic resistance for shear loads	See Annex C 2
Characteristic resistance for shear loads	See Annex C 3
Displacement	See Annex C 4

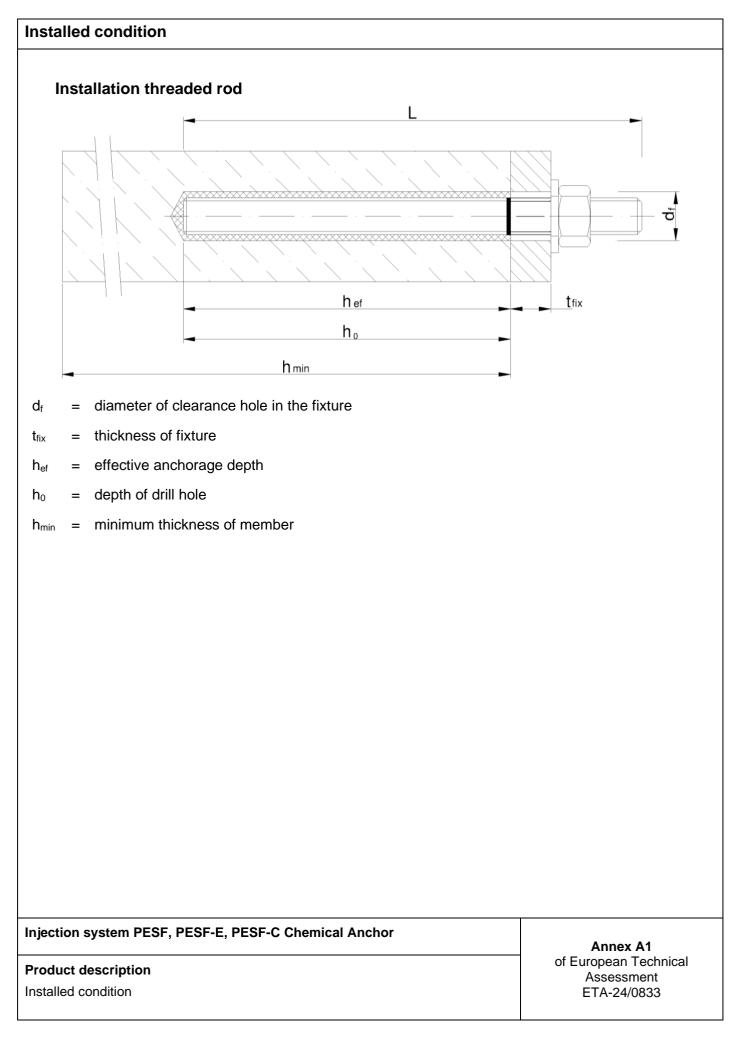
3.2 Hygiene, health and environment (BWR 3)

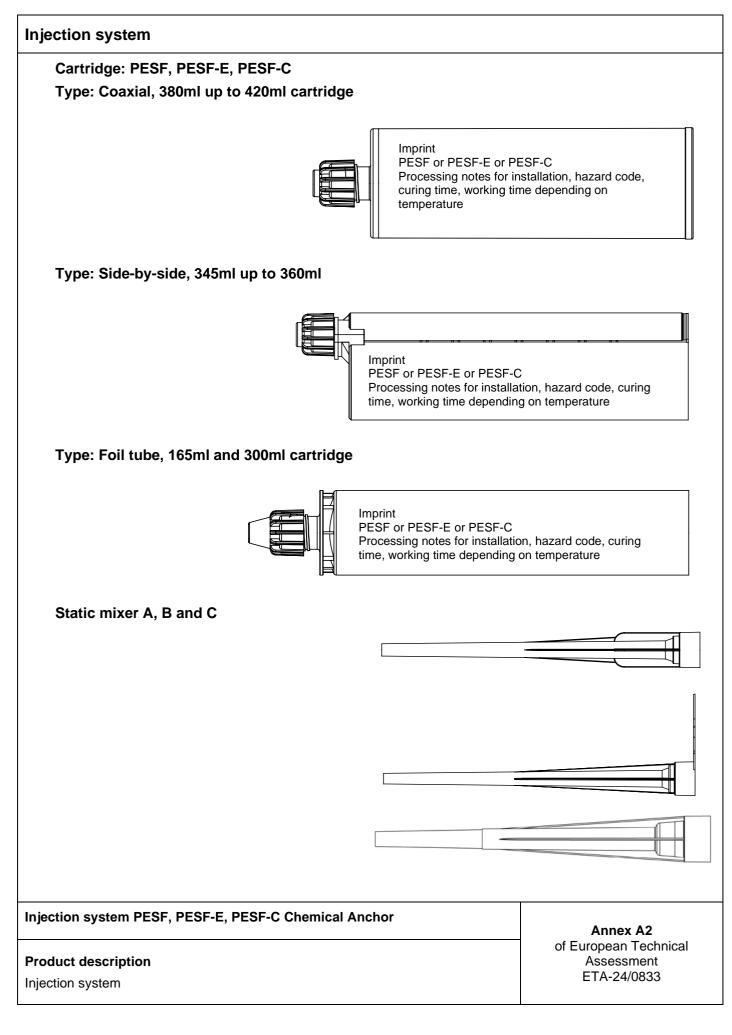
No performance determined.

3.3 General aspects relating to fitness for use

Durability and serviceability are only ensured if the specifications of intended use according to Annex B 1 are kept.

4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base


According to the Decision 96/582/EC of the European Commission¹ the system of assessment verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.


Product	Intended use	Level or class	System
Metal anchors for use in concrete	For fixing and/or supporting to concrete, structural elements (which contributes to the stability of the works) or heavy units	-	1

5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited by the Technical Assessment Body. The notified product certification body shall visit the factory at least once a year for surveillance of the manufacturer.

Issued in Ankara on 24.10.2024 by UĞUR GEDİK

Threaded rod Threaded rod M8, M10, M12, M16, M20, M24 with washer and hexagon nut _ges d_1 h_{ef} 3 1 Commercial standard threaded rod with: Materials, dimensions, and mechanical properties according to Table A1 -Inspection certificate 3.1 according to EN 10204:2004 -Marking of embedment depth _ Injection system PESF, PESF-E, PESF-C Chemical Anchor Annex A3 of European Technical **Product description** Assessment Threaded rod ETA-24/0833

Part	Designation	Material					
Steel	, zinc plated ≥ 5 μ m according to EN ISO 4	042:1999 or					
Steel	, hot-dip galvanised ≥ 40 μm according to	EN ISO 1461:2009 and EN ISO	10684:2004+AC:2009				
		Steel, EN 10087:1998 or EN 10	263:2001				
1	Anchor rod	Property class 4.6 , 4.8, 5.8, 8.8 8:2005+AC:2009	s, EN 1993-1-				
		Steel according to EN 10087:19	98 or EN 10263:2001				
2	Hexagon nut, EN ISO 4032:2012	Property class 4 (for class 4.6 o	r 4.8 rod) EN ISO 898-2:2012				
2	Tiexagon nut, EN 130 4032.2012	Property class 5 (for class 5.8 ro	od) EN ISO 898-2:2021				
		Property class 8 (for class 8.8 rd	od) EN ISO 898-2:2021				
	Washer, EN ISO 887:2006,						
3	EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Steel, zinc plated or hot-dip galv	vanised				
Stain	less steel						
		Material 1.4401 / 1.4404 / 1.457	1, EN 1088-1:2005				
1	Anchor rod	Property class 70 and 80, EN IS	O 3506-1:2009				
_		Material 1.4401 / 1.4404 / 1.457	1, EN 1088-1:2005				
2	Hexagon nut, EN ISO 4032:2012	Property class 70 and 80, EN IS					
	Washer, EN ISO 887:2006,						
3	EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4401 / 1.4404 / 1.4571, EN 1088-1:2005					
High	corrosion resistance steel						
		Material 1.4529 / 1.4565 / 1.4547, EN 1088-1:2005					
1	Anchor rod	Property class 70 EN ISO 3506-	-1:2009				
		Material 1.4529 / 1.4565 / 1.454	7, EN 1088-1:2005				
2	Hexagon nut, EN ISO 4032:2012	Property class 70 EN ISO 3506-					
	Washer, EN ISO 887:2006,						
3	EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4529 / 1.4565 / 1.4547, EN 1088-1:2005					
hiecti	on system PESF, PESF-E, PESF-C Chemic	al Anchor					
			Annex A4 of European Technical				
rodu	ct description		Assessment				

Specifications of intended use

Anchorages subject to:

• Static and quasi-static loads: M8 to M24

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete: M8 to M24

Temperature range:

- I: -40°C to +40°C (max long-term temperature + 24 °C max short-term temperature + 40 °C)
- II: -40°C to +80°C (max long-term temperature + 50 °C max short-term temperature + 80 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials)
- For all other condition intended use of materials according to EN 1993-1-4:2006+A1:2015 Annex A4, Table A1 related corrosion resistance classes (CRC).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g., position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009

Installation:

- Dry, wet and flooded holes(not sea water)
- Hole drilling by hammer or compressed air drill mode.
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Injection system PESF, PESF-E, PESF-C Chemical Anchor

Intended use

Annex A5 of European Technical Assessment ETA-24/0833

Installation parameters											
Table B1: Installation parameters for threaded rod											
Anchor size			M8	M10	M12	M16	M20	M24			
Diameter of anchor bolt or thread diameter	d	mm	8	10	12	16	20	24			
Nominal diameter of drill bit	d ₀	mm	10	12	14	18	24	28			
Diameter of clearance hole in the fixture (≤)	d _f	mm	9	12	14	18	22	26			
Diameter of steel brush (≥)	d _b	mm	12	14	16	20	26	30			
Minimum effective anchorage depth	h _{ef,min}	mm	60	60	70	80	90	96			
Maximum effective anchorage depth (20*d)	h _{ef,max}	mm	160	200	240	320	400	480			
Minimum thickness of the concrete member	h _{min}	mm	h _{ef} +30mm ≥100mm		ł	h _{ef} + 2*d ₀					
Nominal torque moment	T _{inst}	Nm	10	20	40	80	120	160			
Thickness of the fixture	t _{fix}	mm	0 < t _{fix} < 1500								
Minimum spacing (5*d)	S _{min}	mm	40	50	60	80	100	120			
Minimum edge distance (5*d)	C _{min}	mm	40	50	60	80	100	120			

Injection system PESF, PESF-E, PESF-C Chemical Anchor	Annex B1
Intended use	of European Technical Assessment
Installation parameters	ETA-24/0833

Cleaning and setting tools

Cleaning brush (steel brush with steel bristles)

Table B3: Cleaning and setting parameters

Threaded Rod	d₀	d _b	d _{b,min}	Piston Plug
mm	mm	mm	mm	#
M8	10	12	10,5	
M10	12	14	12,5	Not required to use
M12	14	16	14,5	piston plug
M16	18	20	18,5	
M20	24	26	24,5	24
M24	28	30	28,5	28

Compressed air tool d₀ between 10mm to 40mm

Hand operated blowing pump d₀ between 10mm to 20mm

Piston plug for overhead and horizontal installation

 d_0 between 24mm to 40mm

Injection system PESF, PESF-E, PESF-C Chemical Anchor

Intended use

Cleaning and setting tools

Annex B2 of European Technical Assessment ETA-24/0833

	 Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1 or Table B2). In case of aborted drill hole: the drill hole shall be filled with mortar.
	2. Hole cleaning
← 4×→	Attention! Standing water in the bore hole must be removed before cleaning.
50	a. Clean the hole with brush and hand pump:
	 starting from the drill hole bottom blow the hole at least 4 times using the hand pump,
	 using the specified brush, mechanically brush out the hole at least 4 times,
₩► 4 ×	 starting from the drill hole bottom, blow at least 4 times with the hand pump.
	The hand-pump can only be used for anchor sizes in uncracked concrete up to bore hole diameter 20mm or embedment depth up to 240mm.
).	b. Cleaning hole with compressed air:
	- starting from the drill hole bottom blow the hole at least 4 times by compressed air (6 atm),
	 using the specified brush, mechanically brush out the hole at least 4 times,
	- blow the hole at least 4 times by compressed air (6 atm),
	Compressed air (min.6 bar) can be used for all sizes in cracked and uncracked concrete.
	After cleaning, the bore hole has to be protected against re- contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning repeated has to be directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.
jection system PESF, P	ESF-E, PESF-C Chemical Anchor Annex B3
ntended use	of European Techn Assessment ETA-24/0833

Curing time

Table B4: Maximum working time (min) and minimum curing time (min) of PESF, PESF-E, PESF-C Chemical Anchor

	Temperature of Temperature of base material cartridge		Maximu	m worki t _{work}	ing time	Minimum curing time ¹⁾ t _{load} or t _{cure}					
Dase material		ena	U Ca	i u iu	ge	PESF-C	PESF	PESF-E	PESF-C	PESF	PESF-E
-20°C	to	-11°C	+5°C	to	+9°C	45	-	-	960	-	-
-10°C	to	-1°C	+5°C	to	+9°C	20	-	-	360	-	-
0°C	to	+4°C	+5°C	to	+9°C	6	-	-	240	-	-
+5°C	to	+9°C	+5°C	to	+9°C	3	10	-	75	150	-
+10°C	to	+19°C	+10°C	to	+19°C	1,5	6	15	45	85	300
+20°C	to	+24°C	+20°C	to	+24°C	1	5	10	25	50	150
+25°C	to	+29°C	+25°C	to	+29°C	-	4	7,5	-	40	85
+30°C	to	+34°C	+30°C	to	+34°C	-	2	5	-	35	50
+35°C	to	+39°C	+35°C	to	+39°C	-	-	3,5	-	-	40
+40°C	to	+44°C	+40°C	to	+44°C	-	-	2,5	-	-	35

¹⁾ In wet or water filled holes the curing times must be doubled.

Injection system PESF, PESF-E, PESF-C Chemical Anchor

Intended use

Curing time

Annex B4 of European Technical Assessment ETA-24/0833

Table C1: Characteristic resistance under tension load in uncracked concrete – static and quasi-static loads

loads									
Size M8 M10 M12 M16									
	ę	Steel failure ⁽¹⁾							
Steel failure with standard threaded rod grade 4.	6								
Characteristic resistance	N _{Rk,s}	[kN]	14	23	33	62	98	141	
Partial safety factor	γ _{Ms} [-] 2.00								
Steel failure with standard threaded rod grade 4.	8	•							
Characteristic resistance	N _{Rk,s}	[kN]	14	23	33	62	98	141	
Partial safety factor	γMs	[-]		•	1.	50			
Steel failure with standard threaded rod grade 5.	8	•							
Characteristic resistance	N _{Rk,s}	[kN]	18	29	42	78	122	176	
Partial safety factor	γMs	[-]		•	1.	50			
Steel failure with standard threaded rod grade 8.	8								
Characteristic resistance	N _{Rk,s}	[kN]	29	46	67	125	196	282	
Partial safety factor	γ _{Ms}	[-]			1.	50			
Steel failure with standard stainless steel thread	ed rod A4-7	0							
Characteristic resistance	N _{Rk,s}	[kN]	26	41	59	110	171	247	
Partial safety factor	γMs	[-]			1.	87			
Steel failure with standard stainless steel thread	ed rod A4-8	0							
Characteristic resistance	N _{Rk,s}	[kN]	29	46	67	126	196	282	
Partial safety factor	γMs	[-]			1.	60			
Steel failure with standard high corrosion thread	led rod grad	le 70							
Characteristic resistance	N _{Rk,s}	[kN]	26	41	59	110	171	247	
Partial safety factor	γ _{Ms}	[-]			1.	87		<u></u>	
Combined pu	ull-out and o	concrete cone	failure (w	orking life	50)				
Characteristic hand registered in unercaked ear	arota C20/2	E working life	EQ vooro						
Characteristic bond resistance in uncracked cor Temperature range I: 40°C/24°C	1	[N/mm ²]	7.5	7.5	7.5	7.0	7.0	6.5	
Temperature range 1. 40°C/24°C	$\tau_{Rk,ucr,50}$		7.5	7.5	7.5	7.0	7.0	0.5	
Temperature range II: 80°C/50°C	τ _{Rk,ucr,50}	[N/mm ²]	7.0	7.0	6.5	6.5	6.5	6.0	
Sustained load factor for TRkucr.50		40°C/24°C			0.	55			
in uncracked concrete	$\psi^0_{sus,50}$				0.				
		80°C/50°C			-	57			
Increasing factor for $\tau_{Rk,ucr}$ in uncracked concrete		C30/37				17			
	ψc	C40/50				32			
¹⁾ in the absence of national regulations		C50/60			1.	42			
	Performar	ices					Anne of Eur Tech Asses ETA-2-	opean nical sment	
Characteristic resistance un	aer tensio	n Ioads in no	on-cracke	ea concre	ete				

Concrete cone failure						
Factor for uncracked concrete	k _{ucr,N}	[-]		11.0		
Edge distance		C _{cr,N}	[mm]		1,5 · h _{ei}	f
Spacing		S _{cr,N}	[mm]		3,0 ⋅ h _{ef}	1
Splitting failure						
Edge distance	c _{cr,sp} for h _{min}	1	[mm]	2,5 · h _{ef} 2,0) • h _{ef}	1,5 · h _{ef}
	c _{cr,sp} for h	$^{2)} \geq 2 \cdot h_{ef}$	[mm]		C _{cr,Np}	
Spacing	Sc	cr,sp	[mm]		2,0 · c _{cr,s}	sp
nstallation safety factors for combir	ned pull-out, o	concrete co	one and split	tting failure		
nstallation safety factors for dry and w	et concrete	γinst	[-]		1.2	
nstallation safety factors for flooded bo	ore hole	γinst	[-]		1.4	
Injection syste		Annex C1 of European Techni Assessment ETA-24/0833				
	P-	erforman				

Size			M8	M10	M12	M16	M20	M24
Steel failure with standard threaded rod grade 4.6				1				1
Characteristic resistance	V ⁰ _{Rk,s}	[kN]	7	11	17	31	49	70
Partial safety factor	γ̈́Ms	[-]			1.6	67	I	
Ductility factor	k ₇	[-]			0.	8		
Steel failure with standard threaded rod grade 4.8		•						
Characteristic resistance	V ⁰ _{Rk,s}	[kN]	7	11	17	31	49	70
Partial safety factor	γ̃Ms	[-]			1.2	25		
Ductility factor	k ₇	[-]			0.	8		
Steel failure with standard threaded rod grade 5.8		-		1				
Characteristic resistance	V ⁰ _{Rk,s}	[kN]	9	14	21	39	61	88
Partial safety factor	γMs	[-]			1.2	-		
Ductility factor	k ₇	[-]	1		0.	8		
Steel failure with standard threaded rod grade 8.8 Characteristic resistance	V ⁰ _{Rk,s}	[LN]]	14	00	33	62	98	141
	26.	[kN]	14	23	 		90	141
Partial safety factor Ductility factor	γ _{Ms} k ₇	[-]			0.			
Steel failure with standard stainless steel threaded	-	[]]			0.	5		
Characteristic resistance	V ⁰ _{Rk,s}	[kN]	13	20	29	55	85	123
Partial safety factor	γ́Ms	[-]			1.5	56	l	
Ductility factor	k ₇	[-]	0.8					
Steel failure with standard stainless steel threaded	rod A4-80		- <u>-</u>					
Characteristic resistance	V ⁰ _{Rk,s}	[kN]	14	23	33	62	98	141
Partial safety factor	γMs	[-]	1.33					
Ductility factor	k ₇	[-]			0.	8		
Steel failure with high corrosion stainless steel thre				1			r	1
Characteristic resistance	V ⁰ _{Rk,s}	[kN]	12	20	29	55	85	123
Partial safety factor	γMs	[-]			1.	56		
Ductility factor	k ₇	[-]			0.	8		
Injection system PESF, PESF-E, PESF-C Chemical Anchor						Ar	nex C2	

Γ

٦

Size			M8	M10	M12	M16	M20	M24
Steel failure with standard threaded rod grade 4.6								
Characteristic resistance	M⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449
Partial safety factor	γ́Ms	[-]	1.67					
Steel failure with standard threaded rod grade 4.8								
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449
Partial safety factor	γMs	[-]			. 1	.25		
Steel failure with standard threaded rod grade 5.8			•					
Characteristic resistance	M⁰ _{Rk,s}	[Nm]	19	37	65	166	324	561
Partial safety factor	γMs	[-]			1	.25	•	
Steel failure with standard threaded rod grade 8.8								
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	898
Partial safety factor	γ́Ms	[-]		•	. 1	.25		
Steel failure with standard stainless steel threaded	I rod A4-70		•					
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	26	52	92	233	454	786
Partial safety factor	γMs	[-]			1	.56	•	
Steel failure with standard stainless steel threaded	l rod A4-80							
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	898
Partial safety factor	γ́Ms	[-]	1.33					
Steel failure with high corrosion stainless steel thr	eaded rod grade 70							
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	26	52	92	233	454	786
Partial safety factor	Ϋ́Ms	[-]			1	.56		

Injection system PESF, PESF-E, PESF-C Chemical Anchor	Annex C3
	of European Technical
	Assessment
	ETA-24/0833
Performances	
Characteristic resistance under shear loads in non-cracked concrete	

Size			M8	M10	M12	M16	M20	M24
Concrete edge failure				L	I	L	L	<u> </u>
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24
Effective length of anchor shear loading	l _f	[mm]			min (h _{ef}	12d _{nom})		
Table C5: Displacement un	der tensi	on load						
Size			M8	M10	M12	M16	M20	M24
Characteristic displacement in	non-cracke	ed C20/25 to C50/60 c	oncrete					
Temperature Rande I : 40°C/24°C	$\delta_{N0-factor}$	[mm/(N/mm ²)]	0.029	0.038	0.038	0.046	0.055	0.067
	δ _{N∞-factor}	[mm/(N/mm ²)]	0.049	0.046	0.058	0.058	0.069	0.066
	δ _{N0-factor}	[mm/(N/mm ²)]	0.028	0.048	0.049	0.055	0.068	0.075
Temperature range II: 80°C/50°C	δ _{N∞-factor}	[mm/(N/mm ²)]	0.069	0.066	0.075	0.086	0.087	0.085
Calculation of the displacement: δ_{N0}		$V; \delta_{N} = \delta_{N^{\infty}-factor} \cdot V; (V -$	- applied shear	r load)				
Table C6: Displacement un	der shea	r loads load						
Size			M8	M10	M12	M16	M20	M24
Characteristic displacement in	non-cracke	ed C20/25 to C50/60 c	oncrete					
Displacement	$\delta_{V0\text{-factor}}$	[mm]	0.026	0.005	0.040		0.047	0.016
			0.020	0.025	0.018	0.017	0.017	0.016
Displacement Calculation of the displacement: δ_{N0}	$\delta_{V^{\infty}\text{-factor}}$	[mm]	0.037	0.038	0.018	0.017	0.025	0.016
	$\delta_{V^{\infty}\text{-factor}}$	[mm]	0.037	0.038				